skip to main content


Search for: All records

Creators/Authors contains: "Walla, Thomas R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Insect herbivory can be an important selective pressure and contribute substantially to local plant richness. As herbivory is the result of numerous ecological and evolutionary processes, such as complex insect population dynamics and evolution of plant antiherbivore defenses, it has been difficult to predict variation in herbivory across meaningful spatial scales. In the present work, we characterize patterns of herbivory on plants in a species‐rich and abundant tropical genus (Piper) across forests spanning 44° of latitude in the Neotropics. We modeled the effects of geography, climate, resource availability, andPiperspecies richness on the median, dispersion, and skew of generalist and specialist herbivory. By examining these multiple components of the distribution of herbivory, we were able to determine factors that increase biologically meaningful herbivory at the upper ends of the distribution (indicated by skew and dispersion). We observed a roughly twofold increase in median herbivory in humid relative to seasonal forests, which aligns with the hypothesis that precipitation seasonality plays a critical role in shaping interaction diversity within tropical ecosystems. Site level variables such as latitude, seasonality, and maximumPiperrichness explained the positive skew in herbivory at the local scale (plot level) better for assemblages ofPipercongeners than for a single species. Predictors that varied between local communities, such as resource availability and diversity, best explained the distribution of herbivory within sites, dampening broad patterns across latitude and climate and demonstrating why generalizations about gradients in herbivory have been elusive. The estimated population means, dispersion, and skew of herbivory responded differently to abiotic and biotic factors, illustrating the need for careful studies to explore distributions of herbivory and their effects on forest diversity.

     
    more » « less
    Free, publicly-accessible full text available December 19, 2024
  2. Abstract

    Insect herbivores are relatively specialized. Why this is so is not clear. We examine assumptions about associations between local abundance and dietary specialization using an 18‐year data set of caterpillar–plant interactions in Ecuador. Our data consist of caterpillar–plant associations and include standardized plot‐based samples and general collections of caterpillars, allowing for diet breadth and abundance estimates across spatial scales for 1917 morphospecies. We find that more specialized caterpillars are locally more abundant than generalists, consistent with a key component of the ‘jack of all trades, master of none’ hypothesis. As the diet breadth of species increased, generalists were not as abundant in any one location, but they had broader occupancy across the landscape, which is a pattern that could reflect high plant beta diversity and is consistent with an alternative neutral hypothesis. Our finding that more specialized species can be both rare and common highlights the ecological complexity of specialization.

     
    more » « less